LC 2015: PAPER 1

QUESTION 2 (25 MARKS)

FACTOR THEOREM

If k is a root of a polynomial equation P(x) = 0, then (x - k) is a factor of P(x) and vice versa. *or*

For a polynomial P(x), $P(k) = 0 \Rightarrow P(k) = (x - k)Q(x)$, where Q(x) is a polynomial of degree one less than P(x).

Call the polynomial function P(x). Substitute different integer values of x into this polynomial until you get an answer of 0.

HINT: The only integer values that work are divisors of the constant term in P(x). So try 1, -1, 11 and -11 in order.

 $P(x) = x^{3} - 3x^{2} - 9x + 11$ $P(1) = (1)^{3} - 3(1)^{2} - 9(1) + 11 = 1 - 3 - 9 + 11 = 0$ ← This is successful. $\therefore (x - 1) \text{ is a factor of } P(x)$

(x - 1) is a linear factor of the cubic polynomial P(x). The other factor will be a quadratic. You can find this quadratic factor by lining up or by division.

LINING UP:

Cubic = Linear × Quadratic	$x^2 - 2x - 11$
$x^{3} - 3x^{2} - 9x + 11 = (x - 1)(x^{2} + px - 11)$	$x-1$ $x^3-3x^2-9x+11$
$x^{3} - 3x^{2} - 9x + 11 = x^{3} + (p-1)x^{2} + (-p-11)x + 11$	$\mp x^3 \pm x^2$
Line up $x^2: -3 = p - 1 \Rightarrow p = -2$	$-2x^2-9x+11$
: $P(x) = 0 \Rightarrow x^3 - 3x^2 - 9x + 11 = (x - 1)(x^2 - 2x - 11) = 0$	$\frac{\pm 2x^2 \mp 2x}{-11x + 11}$
	$\frac{\pm 11x\mp 11}{0}$

Finally solve the quadratic equation.

 $x^{2} - 2x - 11 = 0$ a = 1, b = -2, c = -11 $x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(1)(-11)}}{2(1)}$ $= \frac{2 \pm \sqrt{4 + 44}}{2} = \frac{2 \pm \sqrt{48}}{2} = \frac{2 \pm 4\sqrt{3}}{2}$ $= 1 \pm 2\sqrt{3}$ Answers : $x = 1, 1 \pm 2\sqrt{3}$ FORMULAE AND TABLES BOOK Algebra: Roots of the quadratic equation $ax^2 + bx + c = 0$ [page 20] $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

DIVISION:

Marking Scheme Notes

- Question 2 [Scale 25E (0, 5, 10, 15, 20, 25)]
- 5: Effort at finding root, i.e. f(1), f(-1), etc.
- **10**: Finds one root correctly
 - x^2 after division by incorrect factor
 - Correct answers in decimal form from calculator with or without work
- **15**: Tries division and gets x^2 at very minimum
- 20: Having got a quadratic equation with no remainder, fills in quadratic formula
 - $1 \pm \sqrt{12}$

Note: If there is a remainder after division can only get maximum of 15 marks.