LC 2015: PAPER 1

Question 2 (25 marks)

FACTOR THEOREM

If k is a root of a polynomial equation $P(x)=0$, then $(x-k)$ is a factor of $P(x)$ and vice versa. or
For a polynomial $P(x), P(k)=0 \Rightarrow P(k)=(x-k) Q(x)$, where $Q(x)$ is a polynomial of degree one less than $P(x)$.

Call the polynomial function $P(x)$. Substitute different integer values of x into this polynomial until you get an answer of 0 .
Hint: The only integer values that work are divisors of the constant term in $P(x)$. So try $1,-1,11$ and -11 in order.
$P(x)=x^{3}-3 x^{2}-9 x+11$
$P(1)=(1)^{3}-3(1)^{2}-9(1)+11=1-3-9+11=0 \leftarrow$ This is successful.
$\therefore(x-1)$ is a factor of $P(x)$
$(x-1)$ is a linear factor of the cubic polynomial $P(x)$. The other factor will be a quadratic. You can find this quadratic factor by lining up or by division.

Lining UP:

Cubic $=$ Linear \times Quadratic
$x^{3}-3 x^{2}-9 x+11=(x-1)\left(x^{2}+p x-11\right)$
$x^{3}-3 x^{2}-9 x+11=x^{3}+(p-1) x^{2}+(-p-11) x+11$
Line up $x^{2}:-3=p-1 \Rightarrow p=-2$
$\therefore P(x)=0 \Rightarrow x^{3}-3 x^{2}-9 x+11=(x-1)\left(x^{2}-2 x-11\right)=0$

Division:

$$
\begin{aligned}
& \\
& \mp \frac{x^{3} \pm x^{2}}{-2 x^{2}-9 x+11} \\
& \frac{ \pm 2 x^{2} \mp 2 x}{-11 x+11} \\
& \frac{ \pm 11 x \mp 11}{0}
\end{aligned}
$$

Finally solve the quadratic equation.

$$
\begin{aligned}
& x^{2}-2 x-11=0 \\
& a=1, b=-2, c=-11 \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-11)}}{2(1)} \\
& =\frac{2 \pm \sqrt{4+44}}{2}=\frac{2 \pm \sqrt{48}}{2}=\frac{2 \pm 4 \sqrt{3}}{2} \\
& \\
& =1 \pm 2 \sqrt{3}
\end{aligned}
$$

Answers : $x=1,1 \pm 2 \sqrt{3}$

Marking Scheme Notes

Question 2 [Scale 25E (0, 5, 10, 15, 20, 25)]
5: - Effort at finding root, i.e. $f(1), f(-1)$, etc.
10: • Finds one root correctly

- x^{2} after division by incorrect factor
- Correct answers in decimal form from calculator with or without work

15: - Tries division and gets x^{2} at very minimum
20: • Having got a quadratic equation with no remainder, fills in quadratic formula

- $1 \pm \sqrt{12}$

Note: If there is a remainder after division can only get maximum of 15 marks.

